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Replacements

This is a new technical report.

Executive summary

This article describes a Matlab tool for parametric identification of radiation-force models of marine
structures. These models are a key component of force-to-motion models used in simulators, motion
control designs, and also for initial performance evaluation of wave-energy converters. The software
described provides tools for preparing the non-parmatric data generated hydrodynamic codes and
identification with automatic model-order detection. The identification is considered in the frequency
domain.
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1 Introduction

One approach to develop linear time-domain models of marine structures consist of using potential-
theory hydrodynamic codes to compute frequency-dependent coefficients and frequency responses,
and then use these data for system identification in order to implement the Cummins equation, which
is a linearised vector equation of motion. If physical-model or full scale experiments are available,
then mmathematical model based on the Cummins equation can be corrected for viscous effects. This
procedure us summarised in Figure 1.

A great deal of work has been reported in the literature proposing the use of different identifi-
cation methods to obtain approximating fuild-memory models. Taghipour et al. (2008) and Perez
and Fossen (2008b) provide an up-to-date review of the different methods. In particular, the latter
reference discusses the advantages of using frequency-domain methods for the identification of fluid
memory models. Since the data provided by hydrodynamic codes is in the frequency domain,
identification in the frequency domain is a natural approach, which does not require transformation
of the data to the time domain. If not handled appropriately, the latter transformation can result
in errors due to the finite amount of frequency-domain data. More importantly, when performing
frequency-domain identification, one can enforce model structure and parameter constraints; and
thus, the class of models over which the search is done is reduced, and the models obtained present
characteristics in agreement with the hydrodynamic modelling hypothesis.

In this article, we present a set of Matlab functions to perform identification of radiation
forces. We consider two cases. In first case, information related to the infinite-frequency added mass
coefficients is considered available. In the second case, these coefficients are estimated jointly with the
fluid-memory model (Perez and Fossen, 2008a). The second case is relevant for hydrodynamic codes
based on 2D-potential theory, which do not normally solve the boundary-value problem associated
with the innite frequency.

Hydrodynamic 
Code 

Iden/fica/on  Cummins Equa/on 

Experiments 
Model with Viscous 

Correc/on 

Hull geometry 
and loading 
condition 

Non-parametric 
models: frequency 
response functions 

Parametric fluid 
memory model 

Figure 1: Hydrodynamic modelling procedure.
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2 Dynamics of Ships and Offshore Strucutres

The linearised equation of motion of marine structure can be formulated as

MRB ξ̈ = τ . (1)

The matrix MRB is the rigid-body generalised mass. The generalised-displacement vector ξ ,
[x, y, z, φ, θ, ψ]T gives the position of the body-fixed frame with respect to an equilibrium frame (x-
surge, y-sway, and z-heave) and the orientation in terms of Euler angles (φ-roll, θ-pitch, and ψ-yaw).
The generalised force vector and τ , [X,Y, Z,K,M,N ]T gives the respective forces and moments in
the six degrees of freedom. This force vector can be separated into three components:

τ = τ rad + τ visc + τ res + τ exc, (2)

where the first term corresponds to the radiation forces arising from the change in momentum of the
fluid due to the motion of the structure and the waves generated as the result of this motion, the
second term corresponds to forces due to fluid viscous effects, the third term corresponds to restoring
forces due to gravity and buoyancy, and the fourth component represents the pressure forces due to
the incoming waves other forces used to control the motion of the marine structure.

Cummins (1962) used potential theory to study the radiation hydrodynamic problem in the
time-domain for an ideal fluid (no viscous effects) and found the following representation:

τ rad = −A∞ ξ̈ −
∫ t

0
K(t− t′)ξ̇(t′) dt′. (3)

The first term in (3) represents pressure forces due the accelerations of the structure, and A∞ is a
constant positive-definite matrix called infinite-frequency added mass. The second term represents
fluid-memory effects that capture the energy transfer from the motion of the structure to the radiated
waves. The convolution term is known as a fluid-memory model. The kernel of the convolution term,
K(t), is the matrix of retardation or memory functions (impulse responses).

By combining terms and adding the linearised restoring forces τ res = −Gξ, the Cummins
Equation (Cummins, 1962) is obtained:

(MRB + A∞)ξ̈ +
∫ t

0
K(t− t′)ξ̇(t′) dt′ + Gξ = τ exc, (4)

Equation (4) describes the motion of ships and offshore structures in an ideal fluid provided the
linearity assumption is satisfied. This model can then be embellished with non-linear components
taking into account, for example, viscous effects and mooring lines–see Figure 1.

3 Frequency-domain Models

When the radiation forces (3) are considered in the frequency domain, they can be expressed as follows
(Newman, 1977; Faltinsen, 1990):

τ rad(jω) = −A(ω)ξ̈(jω)−B(ω)ξ̇(jω). (5)
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The parameters A(ω) and B(ω) are the frequency-dependent added mass and potential damping respec-
tively. This representation leads to the following frequency-domain relationship between the excitation
forces and the displacements:

[−ω2[M + A(ω)] + jωB(ω) + G]ξ(jω) = τ exc(jω). (6)

Ogilvie (1964) showed the realation between the parameters of the time-domain model (4) and
frequency-domain model (6) using the Fourier Transform of (4):

A(ω) = A∞ −
1
ω

∫ ∞
0

K(t) sin(ωt) dt, (7)

B(ω) =
∫ ∞

0
K(t) cos(ωt) dt. (8)

From expression (7) and the application of the Riemann-Lebesgue lemma, it follows that
A∞ = limω→∞A(ω), and hence A∞ is called infinite-frequency added mass.

It also follows from the Fourier transform that the time- and frequency-domain representation
of the retardation functions are

K(t) =
2
π

∫ ∞
0

B(ω) cos(ωt) dω, (9)

and

K(jω) = B(ω) + jω[A(ω)−A∞]. (10)

Expressions (9) and (10) are key to generate the data used in the identification problems that seek
parametric approximations to the fluid memory terms.

Hydrodynamic codes based on potential theory, are nowadays readily to compute B(ω) and
A(ω) for a finite set of frequencies of interest—see, for example, Beck and Reed (2001) and Bertram
(2004) for an overview. Hydrodynamic codes based on 3D potential theory usually solve, in addition,
the boundary-value problem associated with infinite-frequency that gives A∞.

4 Identification of Radiation-force Models

A direct approach to use non-parametric models to implement simulation models consists of a direct
implementation of (4) in discrete time. This approach can be time consuming and may require
significant amounts of computer memory. In addition, the non-parmteric models can result difficult
to work with for the analysis and design of vessel motion control systems.

One way to overcome these difficulties consists of approximating the fluid-memory models by
a linear-time-invariant parametric model in state-space form:

µ =
∫ t

0
K(t− t′)ξ̇(t′) dt′ ≈ ẋ = Â x + B̂ ξ̇

µ̂ = Ĉ x,
(11)

where the number of components of the state vector x corresponds to the order of the approximating
system and the matrices Â, B̂, and Ĉ are constants. Note that the above state-space approximation
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does not have a feed-throug term D̂ ξ̇ in the output equation. The reason for this is that the mapping
ξ̇ 7→ µ has relative degree 1—this is discussed in the next section.

The above approximation problem can be considered in the frequency domain:

K(jω) ≈ K̂(s = jω), (12)

where K̂(s) is matrix of rational transfer functions:

K̂ik(s) =
Pik(s)
Qik(s)

=
prs

r + pr−1s
r−1 + ...+ p0

sn + qn−1sn−1 + ...+ q0
. (13)

4.1 Identification when A∞ is Avalaible

The identification problem then consists of selecting the order of the transfer functions K̂ik(s) (13)
and estimating their parameters. This problem can be formulated in terms of curve fitting:

θ? = arg min
θ

∑
l

wl ε
∗
l εl, (14)

εl = Kik(jωl)− K̂ik(jωl,θ) (15)

where the notation ∗ indicates transpose complex conjugate, wl are weighting coefficients. The non-
paramtetric model Kik(jωl) is computed via (10) using Aik(ωl), Bik(ωl) and A∞,ik, which are obtained
from a hydrodynamic code for a set of frequencies ωl. The structure of the estimate K̂ik is given by
(13), and the vector of parameters θ is given by

θ = [pr, ..., p0, qn−1, ..., q0]T . (16)

From hydrodynamic properties of the model, it follows that the problem (14) must be considered
subject to the following constraints (Perez and Fossen, 2008b):

K̂ik(s) has a zero at s = 0, (17)

K̂ik(s) has relative degree 1, (18)

K̂ik(s) is stable, (19)

K̂ik(s) is positivie real for i = k. (20)

The above is a non-linear optimisation problem. Two methods can be followed to solve this problem:

1. Linearise (14), and solve a sequence of linear Least-Square problems using the solution of the
previous iteration to compute the weighting coefficients wl.

2. Use the solution of the linear problem to initialise a Gauss-Newton search algorithm.

The linearisation of (14) is due to (Levy, 1959) and the iterative solution via a sequence of linear
problems is due to (Sanathanan and Koerner, 1963):

θ̂p = arg min
θ ∑

l

sl,p |Qik(jωl,θ)Kik(jωl)− Pik(jωl,θ)|2 , (21)
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where

sl,p =
1

|Qik(jωl, θ̂p−1)|2
.

Note that (21) results in a Linear LS minimization. After a few iterations (usually p=10 to 20),
Qik(jωl,θp) ≈ Qik(jωl,θp−1); and therefore, (14) is approximately recovered. This allows solving the
nonlinear LS problem via an iteration of linear ones.

This method provides a good trade-off between accuracy and computational complexity. The
toolbox described in Section 5 supports both methods.

4.2 Order Selection

With respect to the order selection of the approximation, it follows from the constraints (17)-(20) that
the minimum order transfer function has the following form

K̂min
ik (s) =

p1s

s2 + q1s+ q0
. (22)

For automatic order determination, one can start with the lowest order approximation and increase
the order to improve the fitting until a satisfactory approximation is obtained. This is the method
used in the software described in Section 5. As a metric for determining the quality of the fit the
coefficient of determination 0 ≤ R2 ≤ 1 is used for both added mass and damping:

R2 = 1 =
∑

k(Xk − X̂k)2∑
k(Xk −X)2

, (23)

where Xk are the data points and X̂k are the estimates. That is once the parametric model (13) is
obtained, the added mass and damping are reconstructed from its real and imaginary parts, and the
corresponding coefficients of determination are computed. If these coefficients are below 0.99, then
the model order is increased.

4.3 Stability

The resulting model from the LS minimization may not necessarily be stable because stability is not
enforced as a constraint in the optimisation. This can be addressed after the identification. Should
the obtained model be unstable, one could obtain a stable one by reflecting the unstable poles about
the imaginary axis and re-computing the denominator polynomial. That is,

(i) Compute the roots of λ1, . . . , λn of Qik(s, θ̂ik).

(ii) If Re{λi} > 0, then set Re{λi} = - Re{λi},

(iii) Reconstruct the polynomial:
Qik(s) = (s− λ1)(s− λ1) · · · (s− λn).
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4.4 Passivity

The mapping ξ̇ into a force introduced by the fluid-memory convolution is passive–see Perez and Fossen
(2008a). A disadvantage of the method of LS curve fitting is that it does not enforce passivity. If
passivity is required (i.e., Bik(ω) > 0), a simple way to ensure it is to try different order approximations
and choose the one that is passive. The approximation is passive if

Re
{
Pik(jωl,θ)
Qik(jωl,θ)

}
> 0. (24)

When this is checked, one should evaluate the transfer function at low and high frequencies—below
and above the frequencies used for the parameter estimation.

Often, low-order approximations models of the convolution terms given by this method are
passive—the term ‘low’ depends on the data of the particular vessel under consideration. Therefore,
one can reduce the order and trade-off fitting accuracy for passivity.

4.5 Identification when A∞ is not Availaible

Hydrodynamic codes based on 2-D potential theory normally do not provide the value of the
infinite-frequency added mass matrix A∞. In these cases, we cannot form K(jω) as indicated in (10).

In this section, we summarise the method of Perez and Fossen (2008a), which estimates jointly the
infinite-frequency added mass and the fluid-memory transfer function. The method exploits the
knowledge and procedures used in the identification of K̂ik(s) discussed in the previous section, and
therefore, it provides an extension of those results putting the two identification problems into the
same framework.

On the one hand, the radiation forces in the frequency-domain given in (5) can be expressed

τrad,i(jω) = −
[
Bik(ω)
jω

+Aik(ω)
]
ξ̈k(s), (25)

where the expression in brackets gives the complex coefficient

Aik(jω) ,
Bik(ω)
jω

+Aik(ω). (26)

On the other hand, taking the Laplace transform of (3), and assuming a rational approximation for
the convolution term we obtain

τ̂rad,i(s) = −
[
A∞,ik s+ Pik(s)

Qik(s)

]
ξ̇k(s), (27)

= −
[
A∞,ik + P ′

ik(s)

Qik(s)

]
ξ̈k(s) (28)

The transfer function in brackets in (28) can be further expressed as

Âik(s) =
Rik(s)
Sik(s)

=
A∞,ikQik(s) + P ′ik(s)

Qik(s)
. (29)

Thus, we can use Least-Squares optimisation to estimate the parameters of the approximation (29)
given the frequency-respose data (26):

θ? = arg min
θ

∑
l

wl (ε∗l εl), (30)
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with
εl = Aik(jωl)−

Rik(jωl,θ)
Qik(jωl,θ)

, (31)

and the constraint that n = degRik(s) = degRik(s). As already mentioned in the previous section,
the minimum order approximation is n = 2. Therefore, we can start with this order and increase it
to improve the fit if necessary. Hence, we can use the same algorithms that we use for the case when
the infinite-frequency added mass is available, subject to different order constraints in interpretation
of the estimates obtained.

Since the polynomial Qik(s) is normalised to be monic, then

Â∞,ik = lim
ω→∞

Rik(s,θ?)
Sik(s,θ?)

. (32)

That is, the infinite-frequency added mass A∞,ik is the coefficient of the highest order term of
Rik(s,θ?). Also, after obtaining Rik(s,θ?) and Sik(s,θ?), we can recover the polynomials for the
fluid-memory model:

Qik(s,θ?) = Sik(s,θ?),

Pik(s,θ?) = Rik(s,θ?)− Â∞,ikSik(s,θ?).
(33)

5 Toolbox Description

The toolbox presented in this paper is an independent component of the Marine Systems Simulator
(MSS, 2009). Figure 2 shows a diagram of the different software components of the toolbox, and their
dependability. The main function of the toolbox is FDIRadMod.m, which processes the input data and
returns the estimate of the fluid memory transfer function and also the infinite-frequency added mass
if required. This function calls other functions to prepare the data for identification and to compute
the estimates. The toolbox also includes two demos which show how to use the main function.
The first demo considers the estimation with infinite-frequency added mass available (WA), and the
second demo considers the estimation when infinite-frequency added mass is not available (NA).

The functionality of the main components is described in the following.

5.1 FDIRadMod.m

Purpose: This function process the input data and generates a transfer function object with the
estimate fluid-memory model. The function processes only a single-input-single-output models.
Hence, for a multiple degree of freedom structure, this function should be used for each relevant
coupling i, k.

Syntax:
[Krad,Ainf hat]=FDIRadMod(W,A,Ainf,B,FDIopt,Dof)

Input Data:

• W – Vector of frequencies.

• A – Vector of frequency-dependant added mass.

• Ainf – Infinite-frequency added mass.

10
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FDIRadMod.m 
ω,A(ω),B(ω),A∞ 

FDIopt 
Krad(s), 
[A∞] 

EditAB.m  Ident_retarda>on_FD.m 

Fit_siso_fresp.m 

Ident_retarda>on_FDna.m 

Demo_FDIRadMod_WA.m 

Demo_FDIRadMod_NA.m 

Figure 2: Software organisation and dependability.

• B – Vector of frequency-dependant potential damping.

• FDIopt – Structure with computation options.

• Dof = [i,k] – Coupling of degrees of freedom.

The structure FDIopt has the following fields

• FDIopt.OrdMax – Maximum order to be used in automatic order detection. Typical value
20.

• FDIopt.AinfFlag – Logic flag. If set to 1, the value Ainf is used in the calculations. If set
to 0, the infinite- frequency added mass is estimated and the value in the argument of the
function is ignored.

• FDIopt.Method – This refers to the methods used to solve the parameter optimisation
problem. Option 1 uses a a linearised model and linear Least Squares. Option 2 uses
iterative linear Least Squares, Option 3 uses the linear Least Squares solution to initialise
a non-linear Least-Square problem solved using the Gauss-Newton method. The option
value 2 gives a good trade-off between computational speed and accuracy.

• FDIopt.Iterations – Maximum number of iterations to be used in the iterative linear LS
solution.

• FDIopt.LogLin – Logic flag. If set to 1 all the data is plotted in logarithmic scale. If set to
0, all the data is plotted in linear scale.

• FDIopt.wsFactor – This is a sampling factor for plotting the data of the parametric ap-
proximation. The sample frequency used to plot the data is this factor times the minimum
difference of frequencies in the input vector W. A typical value is 0.1.

• FDIopt.wminFactor – The minimum frequency to be used in the plot is
FDIopt.wminFactor*Wmin, where Wmin is the minimum frequency of the dataset used
for identification. Typical value 0.1.
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• FDIopt.wmaxFactor – The maximum frequency to be used in the plot is
FDIopt.wmaxFactor*Wmax, where Wmax is the maximum frequency of the dataset used
for identification. Typical value 2 to 5.

Output Data:

• Krad – Single-input-single-output transfer function object with the estimate of the fluid
memory approximation.

• Ainf hat – Estimate of the infinite-frequency added mass coeffieicient. If the option
FDIopt.AinfFlag is set to 1, then Ainf hat=Ainf.

Description: The function FDIRadMod.m first calls editAB.m to prepare the data for identification,
which allows the used to select the frequency range to be used for identification and to eliminate
wild points that may be present in the data due to numerical problems associated with the
hydrodynamic code. Then, depending on FDIopt.AinfFlag, the function calls the appropriate
computation routine—see Figure 2.

The function FDIRadMod.m also makes an automatic order estimate by increasing the or-
der of the approximation and computing the the coefficient of determination related to the
fitting of both added mass and damping. When this coefficient reaches the value 0.99, the
function stops increasing the order, and the re-constructued added mass and damping are
plotted together with the nonparametric data used for identification. At this point, the function
prompt the user to either adjust the order of the approximation manually via a keyboard input
or either to leave the model as it is and exit the function. The user can make as many changes
in order as required, and every time there is a change in the order, the model is re-estimted.

5.2 EditAB.m

Purpose: This function allows the user to select the frequency ranged to be used for identification
and to eliminate data wild points1. This is a support function for FDIRadMod.m, so the used may
not need to call it directly.

Description: The function first plots the added mass and potential damping as a function of the
frequency, and then prompts the user to select the range of freuencies to for idnetification.
This is done by clicking with the mouse on the plot of either the added mass and damping.
The low-frequency data point should be clicked first, followed by the high-frequency point, and
finally press return. The selected data is then re-plotted.

After selecting the frequency range, the function allows the elimination of data wild points. A
message on the workspace prompts the user to opt for wild point elimination. If required, this
elimination is done by clicking with the mouse on all the points that are to be eliminated, and
then press enter—this can be done either on the added mass or potential damping plot. The
function allows the user to re-start the process in case a point is deleted accidentally.

1Wild points in the data of hydrodynamic codes are due to ill-conditioned numerical problems, which normally arise at
high-frequencies because of inappropriate panel sizes used to discreteise the hull–see Faltinsen (1990) for details.
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5.3 Ident retardation FD.m

Purpose: This function performs the parameter estimation of the approximating fluid-memory trans-
fer function given a desired order and the frequency response K(jωl).

Description: This is a support function for FDIRadMod.m, so the user may not need to call it directly.
This function performs the estimation for the problem in which the infinite frequency added
mass is available to compute K(jωl). This problem is described in Section 4.1. The function
performs data scaling and enforces the model structure constraints (17)–(20). A summary of
the algorithm main steps is given in the Appendix.

5.4 Ident retardation FDna.m

Purpose: This function performs the joint parameter estimation of the approximating fluid-memory
transfer function and the infinite-frequency added mass coefficient.

Description: This is a support function for FDIRadMod.m, so the user may not need to call it directly.
The function uses as input the frequency-dependant added mass and damping, and it requires a
desired order. This problem is described in Section 4.5. The function performs data scaling and
enforces the model structure constraints (17)–(20).

5.5 Fit siso fresp.m

Purpose: This is a general purpose function to estimate single-input-single-output transfer function
of a specified order and relative degree given a complex frequency response.

This function can not only be used to identify fluid-memory transfer function, but also
force to identify force-to-motion transfer functions (Perez and Lande, 2006). That latter is a
functionality that will be included in future versions of the toolbox.

Description: This is a support function for Ident retardation FD[na].m, so the user may not need to
call it directly. This function implements 3 methods for parameter estimation, namely, 1 - uses
a a linearised model and linear Least Squares. 2 - uses iterative linear Least Squares, 3- uses
the linear Least Square solution to initialise a non-linear Least Square problem solved using the
Gauss-Newton method. The function is build upon the functionality invfreqs.m of Matlab’s
Signal Processing Toolbox.

If the user does not have access to invfreqs.m, then the algorithm given in the Appendix
could be easily implemented by the user—this algorithm refers to the method 2 above, namely,
iterative linear Least Squares.

6 Demos

The toolbox provides two demo files than make use of the main function FDIRadMod.m–see Figure 2.
These demos are based on the data of a FPSO that belongs to the Hydro-add in of the Marine
Systems Simulator (MSS, 2009).

The first demo, Demo FDIRadMod WA.m (WA-with infinite-frequency Added mass), loads the vessel data
structure, and allows the user to select the desired coupling (i, k) for identification. The structure

13



ARC Centre of Excellence for Complex Dynamic Systems and Control–CDSC

vessel contains data corresponding to 6 degrees of freedom. Hence i, k =1,...,6. In this section, we
will illustrate the results on the models corresponding to vertical motion; that is, couplings 3-3, 3-5,
5-3, and 5-5.

Figure 3 shows the raw added mass and damping for coupling 5-3, which by symmetry of the
hull it is the same as the 3-5 coupling. This is the data obtained from the hydrodynamic code.
Figure 4 shows the edited data after eliminating some wild points. Figure 5 shows the corresponding
curve fitting results. This figure shows the fitting of the fluid-memory frequency response on the
left-hand column, and the re-construction of added mass and damping on the right-hand column.
The order of the approximation is 5, which is obtained automatically by the function. Figures 6 and
7 show the corresponding results for the 3-3 and 5-5 couplings. For both these couplings the auto-
matic order detection selected order 3, but then we manually increase the order to 4 to have a better fit.

The second demo, Demo FDIRadMod NA.m (NA-No infinite-frequency Added mass), also loads the
vessel data structure of the FPSO, and allows the user to select the desired coupling for identifi-
cation. In this demo, however, the identification is done without using the infinite-frequency added
mass coefficient. Figure 8 shows the fitting results for the 5-3 coupling. The left-hand column shows
the fittign of the complex coefficient Ã(jω) given by (26), whereas the right-hand column shows the
re-construction of added mass and damping. Figure 9 shows the estimated fluid-memory frequency
response function. These results are in agreement with those shown in Figure 5; however, there are
small differences due to the fact that the two estimators use different information.

It is worthwhile highlighting that the removal of wild point is important. For example, Fig-
ures 10 and 11 shows the results of identification without using added mass for the coupling 5-3 when
the wild points in the added mass and damping have not been removed. In this case the automatic
order detection selected an approximation of order 10. This is because the algorithm tries to fit highly
resonant poles to the wild points. In these cases the function gives the user the option to manually
reduce the order. However, for some cases this may not solve the problem, and the identification
process should be started again and remove the wild points.

7 Software Repository

The toolbox presented in this report is an independent component of the Marine Systems Simulator
(MSS, 2009) maintained by the authors. This is a free toolbox released under a GNU licence. The
software is under continuing development and it is available at www.marinecontrol.org

8 Conclusion

This paper describes a toolbox for identification of radiation force models of marine structures using
frequency-domain identification. The models identified find application in the development of ship
simulators, control design, and the evaluation of wave energy converters.

The software described provides tools for preparing the non-parmatric data generated hydro-
dynamic codes, automatic model order detection, and parameter estimation. The toolbox contains a
main function that performs all these tasks by calling other support functions. The user may only
need to call the main function.
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The identification is done for single-input-single-output models. This give freedom to the user
to select the couplings of interest each particular application and to integrate the functionality of the
toolbox into other data processing codes.

The toolbox uses the function invfreqs.m of Matlab’s Signal Processing Toolbox. If the user
does not have access to invfreqs.m, then the algorithm given in the Appendix could be easily
implemented by the user—this algorithm refers to the iterative linear Least Square solution of the
parameter estimation problem.

The software is part of the Marine Systems Simulator and is available at www.marinecontrol.org
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A Parameter Estimation Algorithm

This section presents the main steps of the parameter estimation algorithm for the case where the
infinite-frequency added mass coefficients are used in the identification.

1. Set the appropriate range of frequencies where the hydrodynamic data is considered accurate,
eliminate wild points, and compute the frequency response for a set of frequencies ωl:

Kik(jωl) = Bik(ωl)− jω(Aik(ωl)−A∞,ik). (34)

2. Scale the data:
K ′ik(jωl) = αKik(jωl), α ,

1
max |Kik(jωl)|

. (35)

3. Select the order of the approximation n=deg(Qik(jω,θik)). The minimum order approximation
n=2 can be the starting point and can be used for automatic order selection.

4. Estimate the parameters

θ?
ik = arg min

θ

∑
l

∣∣∣∣K ′ik(jωl)
(jωl)

−
P ′ik(jωl,θ)
Qik(jωl,θ)

∣∣∣∣2 , (36)

with deg(P ′ik(jω,θik))=n− 2. This problem can be linearised and solved iteratively as in (21).

5. Check stability by computing the roots of Qik(jω,θ?
ik) and change the real part of those roots

with positive real part.

6. Construct the desired transfer function by scaling and incorporate the s factor in the numerator:

K̂ik(s) =
1
α

sP ′ik(s,θ?
ik)

Qik(s,θ?
ik)

. (37)

7. Estimate the added-mass and damping based on the identified parametric approximation via

Âik(ω) = Im{ω−1 K̂ik(jω)}+A∞,ik (38)

B̂ik(ω) = Re{K̂ik(jω)}, (39)

and compare with the Aik(ω) and Bik(ω) given by the hydrodynamic code. If the fitting is not
satisfactory increase the order of the approximation and go back to step (iii).

8. Check for passivity if required B̂ik(jω) > 0.
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Figure 3: Raw added mass and damping data of a FPSO vessel computed by a hydrodynamic code.
Coupling 5-3 (pitch-heave).
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Figure 4: Added mass and damping of a FPSO vessel after eliminating wildpoints. Coupling 5-3
(pitch-heave).
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Figure 5: Identification results for coupling 5-3 (pitch-heave) using information of the infinite-
frequency added mass. The left-hand plots show the fluid-memory frequency response data
and the response of the identified model. The right-hand plots show the added mass and
potential damping and the re-constructruction from the identified model.
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Figure 6: Identification results for coupling 3-3 (pitch-heave) using information of the infinite-
frequency added mass. The left-hand plots show the fluid-memory frequency response data
and the response of the identified model. The right-hand plots show the added mass and
potential damping and the re-constructruction from the identified model.
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Figure 7: Identification results for coupling 5-5 (pitch-heave) using information of the infinite-
frequency added mass. The left-hand plots show the fluid-memory frequency response data
and the response of the identified model. The right-hand plots show the added mass and
potential damping and the re-constructruction from the identified model.
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Figure 8: Identification results for coupling 5-3 (pitch-heave) without using information of the infinite-
frequency added mass. The left-hand plots show the complex coefficient Ã(jω) data and the
response of the identified model. The right-hand plots show the added mass and potential
damping and the re-constructruction from the identified model.
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Figure 9: Frequency response of the identified fluid-memory model for the coupling 5-3 (pitch-heave)
without using information of the infinite-frequency added mass.
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Figure 10: Identification results for coupling 5-3 (pitch-heave) without using information of the infinite-
frequency added mass and without eliminating wild points. The left-hand plots show the
complex coefficient Ã(jω) data and the response of the identified model. The right-hand
plots show the added mass and potential damping and the re-constructruction from the
identified model.
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Figure 11: Frequency response of the identified fluid-memory model for the coupling 5-3 (pitch-heave)
without using information of the infinite-frequency added mass and without eliminating
wild points.
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